Case Study on Bagging Stable Classifiers for Data Streams
نویسندگان
چکیده
Ensembles of classifiers are among the strongest classifiers in most data mining applications. Bagging ensembles exploit the instability of base-classifiers by training them on different bootstrap replicates. It has been shown that Bagging instable classifiers, such as decision trees, yield generally good results, whereas bagging stable classifiers, such as k-NN, makes little difference. However, recent work suggests that this cognition applies to the classical batch data mining setting rather than the data stream setting. We present an empirical study that supports this observation.
منابع مشابه
Leveraging Bagging for Evolving Data Streams
Bagging, boosting and Random Forests are classical ensemble methods used to improve the performance of single classifiers. They obtain superior performance by increasing the accuracy and diversity of the single classifiers. Attempts have been made to reproduce these methods in the more challenging context of evolving data streams. In this paper, we propose a new variant of bagging, called lever...
متن کاملImproving reservoir rock classification in heterogeneous carbonates using boosting and bagging strategies: A case study of early Triassic carbonates of coastal Fars, south Iran
An accurate reservoir characterization is a crucial task for the development of quantitative geological models and reservoir simulation. In the present research work, a novel view is presented on the reservoir characterization using the advantages of thin section image analysis and intelligent classification algorithms. The proposed methodology comprises three main steps. First, four classes of...
متن کاملApplication of ensemble learning techniques to model the atmospheric concentration of SO2
In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...
متن کاملAn experimental study on diversity for bagging and boosting with linear classifiers
In classifier combination, it is believed that diverse ensembles have a better potential for improvement on the accuracy than nondiverse ensembles. We put this hypothesis to a test for two methods for building the ensembles: Bagging and Boosting, with two linear classifier models: the nearest mean classifier and the pseudo-Fisher linear discriminant classifier. To estimate diversity, we apply n...
متن کاملIs Bagging Effective in the Classification of Small-Sample Genomic and Proteomic Data?
There has been considerable interest recently in the application of bagging in the classification of both gene-expression data and protein-abundance mass spectrometry data. The approach is often justified by the improvement it produces on the performance of unstable, overfitting classification rules under small-sample situations. However, the question of real practical interest is whether the e...
متن کامل